On a binomial coefficient and a product of prime numbers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a comparison of linguistic and pragmatic knowledge: a case of iranian learners of english

در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...

15 صفحه اول

q-BERNOULLI NUMBERS AND POLYNOMIALS ASSOCIATED WITH GAUSSIAN BINOMIAL COEFFICIENT

Let q be regarded as either a complex number q ∈ C or a p-adic number q ∈ Cp. If q ∈ C, then we always assume |q| < 1. If q ∈ Cp, we normally assume |1− q|p < p − 1 p−1 , which implies that q = exp(x log q) for |x|p ≤ 1. Here, | · |p is the p-adic absolute value in Cp with |p|p = 1 p . The q-basic natural number are defined by [n]q = 1−q 1−q = 1 + q + · · · + q , ( n ∈ N), and q-factorial are a...

متن کامل

The Power of a Prime That Divides a Generalized Binomial Coefficient

The main idea is to consider generalized binomial coefficients that are formed from an arbitrary sequence C, as shown in (3) below. We will isolate a property of the sequence C that guarantees the existence of a theorem like Kummer’s, relating divisibility by prime powers to carries in addition. A special case of the theorem we shall prove describes the prime power divisibility of Gauss’s gener...

متن کامل

Proving Infinitude of Prime Numbers Using Binomial Coefficients

We study the problem of proving in weak theories of Bounded Arithmetic the theorem that there are arbitrarily large prime numbers. We show that the theorem can be proved by some “minimal” reasoning (i.e., in the theory I∆0) using concepts such as (the logarithm) of a binomial coefficient. In fact we prove Bertrand’s Postulate (that there is at least a prime number between n and 2n, for all n > ...

متن کامل

A Binomial Coefficient Identity Associated with Beukers' Conjecture on Apery numbers

By means of partial fraction decomposition, an algebraic identity on rational function is established. Its limiting case leads us to a harmonic number identity, which in turn has been shown to imply Beukers’ conjecture on the congruence of Apéry numbers. Throughout this work, we shall use the following standard notation: Harmonic numbers H0 = 0 and Hn = ∑n k=1 1/k Shifted factorials (x)0 = 1 an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis and Discrete Mathematics

سال: 2011

ISSN: 1452-8630,2406-100X

DOI: 10.2298/aadm110206008a