On a binomial coefficient and a product of prime numbers
نویسندگان
چکیده
منابع مشابه
a comparison of linguistic and pragmatic knowledge: a case of iranian learners of english
در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...
15 صفحه اولq-BERNOULLI NUMBERS AND POLYNOMIALS ASSOCIATED WITH GAUSSIAN BINOMIAL COEFFICIENT
Let q be regarded as either a complex number q ∈ C or a p-adic number q ∈ Cp. If q ∈ C, then we always assume |q| < 1. If q ∈ Cp, we normally assume |1− q|p < p − 1 p−1 , which implies that q = exp(x log q) for |x|p ≤ 1. Here, | · |p is the p-adic absolute value in Cp with |p|p = 1 p . The q-basic natural number are defined by [n]q = 1−q 1−q = 1 + q + · · · + q , ( n ∈ N), and q-factorial are a...
متن کاملThe Power of a Prime That Divides a Generalized Binomial Coefficient
The main idea is to consider generalized binomial coefficients that are formed from an arbitrary sequence C, as shown in (3) below. We will isolate a property of the sequence C that guarantees the existence of a theorem like Kummer’s, relating divisibility by prime powers to carries in addition. A special case of the theorem we shall prove describes the prime power divisibility of Gauss’s gener...
متن کاملProving Infinitude of Prime Numbers Using Binomial Coefficients
We study the problem of proving in weak theories of Bounded Arithmetic the theorem that there are arbitrarily large prime numbers. We show that the theorem can be proved by some “minimal” reasoning (i.e., in the theory I∆0) using concepts such as (the logarithm) of a binomial coefficient. In fact we prove Bertrand’s Postulate (that there is at least a prime number between n and 2n, for all n > ...
متن کاملA Binomial Coefficient Identity Associated with Beukers' Conjecture on Apery numbers
By means of partial fraction decomposition, an algebraic identity on rational function is established. Its limiting case leads us to a harmonic number identity, which in turn has been shown to imply Beukers’ conjecture on the congruence of Apéry numbers. Throughout this work, we shall use the following standard notation: Harmonic numbers H0 = 0 and Hn = ∑n k=1 1/k Shifted factorials (x)0 = 1 an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis and Discrete Mathematics
سال: 2011
ISSN: 1452-8630,2406-100X
DOI: 10.2298/aadm110206008a